# **Energy Transformations**

| Teach 1                                                | Names of student(s) teaching:                                            |
|--------------------------------------------------------|--------------------------------------------------------------------------|
| Teach date:<br>Teach time:<br>Teach length: 45 minutes | Title of lesson: Energy Transformations<br>Source (Kit, Lesson, Page #): |

#### **Concept statement/Main idea:**

This lab is to expose students to the physical concept of energy transformations. Students will explore the different types of energy forms, how they are transferred in a system, and the basic principle of energy conservation.

#### Standards for the lesson:

Students are to have heard the law of conservation of energy.

| Objectives                                                                                     | Evaluation                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Write objectives in SWBAT form                                                                 | Write at least one question to match the objective you listed or describe what you will look at to be sure that students can do this.                                                                                                                                                                                                                                                                   |
| SWBAT <b>understand</b> that energy cannot be created or destroyed, but it can be transferred. | Scientists say that energy cannot be created<br>or destroyed. Interpret this quote in your<br>own words. When scientists state that energy<br>cannot be created or destroyed, it means that<br>energy can be transferred or transformed into<br>another type of energy. This means if there is<br>additional energy added to a system, it must<br>have come from another source; it was not<br>created. |
| SWBAT <b>analyze</b> how energy gets transferred and what it transforms to.                    |                                                                                                                                                                                                                                                                                                                                                                                                         |

### Engagement

Estimated time: 10 minutes



#### Description of activity:

| What the teacher does                                                                             | What the student does                                                                | Possible questions to ask<br>students — think like a student<br>and consider possible student<br>responses |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Teacher will introduce an activity that allows students to investigate the flow of                | Students will listen to the instructions.                                            | How does the bulb from a flashlight get its light?                                                         |
| energy in the system.<br>Teacher will go over the                                                 | Students will also answer<br>questions or ask questions<br>regarding the curriculum. | What kinds of energy does the sun give?                                                                    |
| technical steps so the<br>students will become familiar<br>with the program.                      |                                                                                      | When driving a car, what<br>happens when you step on<br>the acceleration petal?                            |
| Teacher will also ask<br>questions that allows them to<br>grasp the students' prior<br>knowledge. |                                                                                      |                                                                                                            |

#### **Resources needed:**

Computer and powerpoint

Safety considerations:

## **Exploration**

Estimated time: 25 minutes Description of activity:

| What the teacher does                                                      | What the student does                                             | Possible questions to ask<br>students — think like a student<br>and consider possible student<br>responses                                                               |
|----------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The teacher explains what<br>the students will do with the<br>simulations. | Students will analyze how<br>energy changes forms in a<br>system. | What does temperature<br>measure? Temperature<br>measures the average kinetic<br>energy of the particles in the<br>object. The higher the<br>temperature, the faster the |

# UNIVERSITY of HOUSTON

|  | molecules of the substance are moving.                                                                                                                                                              |
|--|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | What happens when you<br>heat the brick and place it<br>into the container of water?<br>The temperature of the water<br>rises.                                                                      |
|  | What happens when you cool<br>the brick and place it into the<br>container of water? The<br>temperature of the water<br>decreases.                                                                  |
|  | What happens when the<br>water is placed on top of the<br>flame? The energy is<br>"flowing" away from the<br>water container, meaning it is<br>transforming into heat. The<br>water is evaporating. |

**Resources needed:** Computer

Safety considerations:

## **Explanation**

Estimated time: 20 minutes Description of activity:

| What the teacher does                            | What the student does                                                      | Possible questions to ask<br>students — think like a student<br>and consider possible student<br>responses |
|--------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Teacher instructs the students to make their own | Students will create their<br>own system and explain what<br>is happening. | What are the transformations of energy and where are they                                                  |

# UNIVERSITY of HOUSTON

| system and describe what is | happening? Each of the |
|-----------------------------|------------------------|
| happening in that system.   | students' will vary.   |

**Resources needed:** 

Safety considerations:

## **Elaboration**

Estimated time: 15 minutes Description of activity:

| What the teacher does                                                                                                      | What the student does                                                                 | Possible questions to ask<br>students — think like a student<br>and consider possible student<br>responses     |
|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Teacher will pass out a card<br>sort that contains pictures of<br>a system and the phases of<br>the energy transformation. | The students will have to<br>match the picture to the right<br>energy transformation. | Where do the energy<br>transformations happen?<br>Can there be multiple energy<br>transformations occurring at |
|                                                                                                                            |                                                                                       | Where does the rest of the energy get converted to?                                                            |

**Resources needed:** 

Powerpoint Card sort WS

Safety considerations:

## **Evaluation**

Estimated time: 10 minutes Description of activity:

| What the teacher does | What the student does | Possible questions to ask<br>students — think like a student<br>and consider possible student<br>responses |
|-----------------------|-----------------------|------------------------------------------------------------------------------------------------------------|
| UNIVERSITY of HOUSTON |                       |                                                                                                            |
|                       | <i>teach</i> HOUSTON  |                                                                                                            |

July 2021

|  | Students will take the formative assessment. | Teacher will pass out a<br>formative assessment to<br>measure what the<br>students understood<br>from the lesson. |
|--|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
|--|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------|

#### **Resources needed:**

**Evaluation Quiz** 

Safety considerations:



| A toaster                            | Electrical Energy→ Thermal Energy<br>and Radiant Energy   |
|--------------------------------------|-----------------------------------------------------------|
| Person running                       | Chemical Energy→ Mechanical<br>Energy                     |
| Candle burning                       | Chemical Energy→ Thermal Energy<br>and Radiant Energy     |
| Play an instrument                   | Mechanical Energy→ Sound Energy                           |
| Turning on a flashlight              | Chemical Energy→ Electrical<br>Energy→ Radiant Energy     |
| Windmill turning                     | Mechanical Energy→ Electrical<br>Energy                   |
| Nuclear Power Plant                  | Nuclear Energy→ Electrical Energy                         |
| Tree Growing Fruit                   | Radiant Energy→ Chemical Energy                           |
| Ironing                              | Electrical Energy→ Thermal Energy                         |
| Digesting an Apple                   | Chemical Energy→ Mechanical<br>Energy→ Thermal Energy     |
| Solar Calculator                     | Radiant Energy→ Electrical Energy                         |
| Mechanical Energy→ Thermal<br>Energy | Electrical Energy→ Mechanical →<br>Energy→ Radiant Energy |

UNIVERSITY of HOUSTON

Name:

Date:

# Energy Transformation Evaluation

1) What is an example of mechanical energy?

- a. Digesting food
- b. Riding a bike
- c. Plant creating food using sunlight
- d. Heating an iron block

2) What are the energy transformations involved in turning on a flashlight?

\_\_\_\_\_2 \_\_\_\_\_2 \_\_\_\_\_2

3) Scientists say that "energy cannot be created or destroyed." What does this mean to you?



July 2021

# UNIVERSITY of HOUSTON